Рубрика «ПРОМЕЖУТОЧНЫЙ МОЗГ, ЕГО СТРОЕНИЕ, ФУНКЦИИ»

ПРОМЕЖУТОЧНЫЙ МОЗГ, ЕГО СТРОЕНИЕ, ФУНКЦИИ

СИНДРОМЫ ПОРАЖЕНИЯ ГИПОТАЛАМО-ГИПОФИЗАРНОЙ СИСТЕМЫ

Многообразие функций  гипоталамо-гипофизарного отдела промежуточ­ного мозга ведет к тому, что при его поражении возникают разнообразные патологические синдромы, включающие в себя различные по характеру нев­рологические расстройства, в том числе признаки эндокринной патологии, проявления вегетативной дисфункции, эмоциональный дисбаланс. Гипоталамическая область обеспечивает взаимодействие между регулятор-ными механизмами, осуществляющими интеграцию психической, прежде всего эмоциональной, вегетативной и гормональной сфер. От состояния гипоталамуса и отдельных его структур зависят многие процессы, играющие важную роль в поддержании в организме гомеостаза. Так, расположенная в переднем его отделе преоптическая область обеспечивает терморегуляцию за счет изменения тепло­вого метаболизма. В случае поражения этой области больной может оказаться не в состоянии отдавать тепло в условиях высокой температуры окружающей среды, что ведет к перегреванию организма и к гипертермии, или так назы­ваемой центральной лихорадке. Поражение задней части гипоталамуса может привести к пойкилотермии, при которой температура тела меняется в зависи­мости от температуры окружающей среды. Латеральная область серого бугра признается «центром аппетита», а с зо­ной расположения вентромедиального ядра обычно связывают чувство насы­щения. При раздражении «центра аппетита» возникает прожорливость, которая может быть подавлена стимуляцией зоны насыщения. Поражение латерально­го ядра обычно ведет к кахексии. Повреждение серого бугра может обусловить развитие адипозогенитального синдрома, или синдрома Бабинского-Фрелиха (рис. 12.5). В эксперименте на животных показано, что гонадотропный центр локали­зуется в ядре воронки и вентромедиальном ядре и выделяет гонадотропный гормон, тогда как тормозной центр половой функции локализуется кпереди от вентромедиального ядра. В процессе деятельности указанных клеточных структур вырабатываются рилизинг-факторы, влияющие на продукцию гипофизом гонадотропных гормонов.         В определенной зависимости от функ­ционального состояния гипоталамуса находятся физико-химические свойства всех тканей и органов, их трофика и в какой-то степени готовность к выполне­нию специфических для них функций. Это касается и нервной ткани, в том числе больших полушарий. Некоторые ядра гипоталамической области функ­ционируют в тесном взаимодействии с ретикулярной формацией, и разграни­чить их влияние на физиологические процессы подчас трудно. В определенной зависимости от сос­тояния и функциональной активности гипоталамуса находятся деятельность сердечно-сосудистой и дыхательной систем, регуляция температуры тела, особенности различных видов обмена (водно-солевого, углеводного, жирово­го, белкового), регуляция работы эндок­ринных желез, функций пищеваритель-   Рис. 12.5. Адипозогенитальный синдром. ного тракта, функциональное состояние мочеполовых органов, в частности осуществление сложных половых рефлексов. Вегетативная дистония может быть следствием несбалансированности дея­тельности трофотропного и эрготропного отделов гипоталамуса. Такая не­сбалансированность возможна у практически здоровых людей в периоды эндокринной перестройки (в пубертатном периоде, во время беременности, климакса). Ввиду высокой проницаемости сосудов, снабжающих кровью ги-поталамо-гипофизарную область, при инфекционных заболеваниях, эндоген­ных и экзогенных интоксикациях может наступать проявляющийся временно или стойкий вегетативный дисбаланс, характерный для так называемого невро-зоподобного синдрома. Возможны также возникающие на фоне вегетативного дисбаланса вегетативно-висцеральные расстройства, проявляющиеся, в част­ности, язвенной болезнью, бронхиальной астмой, гипертонической болезнью, а также другими формами соматической патологии     Особенно характерно для поражения гипоталамического отдела мозга раз­витие различных по характеру форм эндокринной патологии. Среди нейро-эндокринно-обменных синдромов существенное место занимают различные формы гипоталамического (церебрального) ожирения (рис. 12.6), при этом ожи­рение обычно бывает резко выраженным и от­ложение жира чаще возникает на лице, туло­вище и в проксимальных отделах конечностей. Ввиду неравномерности отложения жира тело больного нередко приобретает причудливые формы. При так называемой адипозогениталь-ной дистрофии (синдром Бабинского—Фрели-ха), которая может быть следствием растущей опухоли гипоталамо-гипофизарной области — краниофарингиомы, уже в раннем детском воз­расте наступает ожирение, а в пубертатном периоде обращают на себя внимание недораз­витие половых органов и вторичных половых признаков. Одним из основных гипоталамо-эндок-ринных симптомов является обусловленный недостаточностью продукции антидиуретичес­кого гормона несахарный диабет, характеризу­ющийся повышенной жаждой и выделением больших количеств мочи с низкой относи­тельной плотностью. Избыточное выделение адиурекрина характеризуется олигурией, соп­ровождающейся отеками, и иногда сменяю­щейся полиурией в сочетании с диареей (бо­лезнь Пархона). Избыточная продукция передней долей гипо­физа соматотропного гормона сопровождается развитием синдрома акромегалии. Недостаточность продукции соматотропно­го гормона (СТГ), проявляющаяся с детского возраста, ведет к физическому недоразвитию организма, что проявляется синдромом гипо-   Рис. 12.6. Церебральное ожире­ние. физарного нанизма, при этом прежде всего обращает на себя внимание пропор­циональный карликовый рост в сочетании с недоразвитием половых органов. Гиперфункция оксифильных клеток передней доли гипофиза ведет к избытку продукции СТГ Если чрезмерная его продукция проявляется в пубертатном периоде, развивается гипофизарный гигантизм. Если же избыточная функция оксифильных клеток гипофиза проявляется у взрослых, это ведет к развитию синдрома акромегалии. У гипофизарного гиганта обращает на себя внимание непропорциональность роста отдельных частей тела: очень длинными оказы­ваются конечности, а туловище и голова кажутся относительны небольши­ми. При акромегалии увеличиваются размеры выступающих частей головы: носа, верхнего края глазниц, скуловых дуг, нижней челюсти, ушей. Чрезмерно крупными становятся также дистальные отделы конечностей: кисти, стопы. Проявляется общее утолщение костей. Кожа грубеет, становится пористой, складчатой, сальной, появляется гипергидроз. Гиперфункция базофильных клеток передней доли гипофиза ведет к развитию болезни Иценко—Кушинга, обусловленной в основном избыточной продукцией ад-ренокортикотропного гормона (ЛКТГ) и связанным с этим повышением выделе­ния гормонов коры надпочечников (стероидов). Болезнь характеризуется пре­жде всего своеобразной формой ожирения. Обращает на себя внимание круглое, багровое, сальное лицо. Также на лице характерны высыпания по типу акне, а у женщин — еще и рост волос на лице по мужскому типу. Гипертрофия жи­ровой клетчатки особенно отчетлива на лице, на шее в области VII шейного позвонка, в верхней части живота. Конечности больного по сравнению с ожи­ревшими лицом и туловищем кажутся худыми. На коже живота, передневнут-ренней поверхности бедер обычно видны полосы растяжения, напоминающие стрии беременных. Кроме того, характерно повышение артериального давления, возможны аменорея или импотенция. При выраженной недостаточности функций гипоталамо-гипофизарной об­ласти может развиться гипофизарное истощение, или болезнь Симонса. Болезнь прогрессирует постепенно, истощение при ней достигает резкой степени вы­раженности. Потерявшая тургор кожа становится сухой, матовой, морщинис­той, лицо приобретает монголоидный характер, волосы седеют и выпадают, отмечается ломкость ногтей. Рано наступает аменорея или импотенция. Отме­чаются сужение круга интересов, апатия, депрессия, сонливость. Синдромы нарушения сна и бодрствования могут носить пароксизмальный или затянувшийся, подчас стойкий характер (см. главу 17). Среди них, пожа­луй, лучше других изучен синдром нарколепсии, проявляющийся неудержимым стремлением ко сну, возникающим в дневное время, даже в самой неподхо­дящей обстановке. Часто сочетающаяся с нарколепсией катаплексия харак­теризуется приступами резкого снижения мышечного тонуса, приводящего больного к состоянию обездвиженности на период от нескольких секунд до 15 мин. Приступы катаплексии нередко возникают у больных, находящихся в состояния аффекта (смех, чувство гнева и т.п.), возможны также состояния катаплексии, возникающие при пробуждении (катаплексия пробуждения). Современные методы физиологических исследований, в частности опыт стереотаксических операций, позволили установить, что гипоталамическая область, наряду с другими структурами лимбико-ретикулярного комплекса, принимает участие в формировании эмоций, создании так называемого эмо­ционального фона (настроения) и обеспечении внешних эмоциональных про­явлений. По мнению П.К. Анохина (1966), область гипоталамуса определяет первичное биологическое качество эмоционального состояния, его характерное внешнее выражение. Эмоциональные реакции, прежде всего эмоции стенического характера, ведут к повышению функций эрготронных структур гипоталамуса, которые через посредство вегетативной нервной системы (в основном ее симпатического от­дела) и эндокринно-гуморальной системы стимулируют функции коры больших полушарий, что, в свою очередь, влияет на многие органы и ткани, активизирует в них метаболические процессы. В результате возникает напряжение или стресс, проявляющийся мобилизацией средств адаптации организма к новой обстанов­ке, помогающих ему защититься от влияющих на него или только ожидаемых вредных эндогенных и экзогенных факторов. В качестве причин стресса (стрессоров) могут быть самые разнообразные хронические и острые психические воздействия, провоцирующие эмоцио­нальное перенапряжение, инфекции, интоксикации, травмы. В период стресса обычно меняется функция многих систем и органов, прежде всего сердечно­сосудистой и дыхательной систем (учащение сердцебиения, повышение арте­риального давления, перераспределение крови, учащение дыхания и т.д.). По Г. Селье (Selye Н., род. в 1907 г.), стресс-синдром, или синдром общей адаптации, в своем развитии проходит 3 фазы: реакцию тревоги, во время ко­торой мобилизуются защитные силы организма; стадию сопротивления, отра­жающую полную адаптацию к стрессу; стадию истощения, которая наступает неизбежно, если стрессор оказывается чрезмерно интенсивным или действует на организм слишком долго, так как энергия адаптации или приспособляе­мости живого организма к стрессу не безгранична. Стадия истощения стресс-синдрома проявляется возникновением болезненного состояния, носящего неспецифический характер. Различные варианты таких болезненных состоя­ний Г. Селье назвал болезнями адаптации. Им присущи сдвиги гормонально­го и вегетативного баланса, дисметаболические расстройства, обменные на­рушения, изменения реактивности нервной ткани. «В этом смысле, — писал Селье, — определенные нервные и эмоциональные нарушения, артериальная ги­пертония, некоторые виды ревматизма, аллергических, сердечно-сосудистых и почечных болезней также суть болезнь адаптации».

ГИПОТАЛАМУС И ГИПОФИЗ

Гипоталамус (hypothalamus) составляет нижнюю, филогенетически наиболее древнюю часть промежуточного мозга. Условная граница между таламусами и гипоталамусом проходит на уровне гипоталамических борозд, находящихся на боковых стенках третьего желудочка мозга. Гипоталамус (рис. 12.4) условно делится на две части: переднюю и заднюю. К задней части гипоталамической зоны относят расположенные позади серого бугра сосцевидные тела (corpora mammillaria) с прилежащими к ним участками мозговой ткани. К передней части относится зрительный перекрест (chiasma opticum) и зрительные тракты (tracti optici), серый бугор (tuber cinereum), ворон­ка (infundibulum) и гипофиз (hypophysis). Гипофиз, соединенный с серым буг­ром через воронку и гипофизарную ножку, располагается в центре основания черепа в костном ложе — гипофизарной ямке турецкого седла основной кости. Диаметр гипофиза составляет не более 15 мм, масса его от 0,5 до 1 г. Гипоталамическая область состоит из многочисленных клеточных скопле­ний — ядер и пучков нервных волокон. Основные ядра гипоталамуса можно разделить на 4 группы. 1.  В переднюю группу входят медиальные и латеральные предоптическое, супраоптическое, паравентрикулярные и переднее гипоталамическое ядра. 2.  Промежуточную группу составляют дугообразное ядро, серобугорные ядра, вентромедиальное и дорсомедиальнос гипоталамические ядра, дорсаль­ное гипоталамическое ядро, заднее паравентрикулярное ядро, ядро воронки. 3.  Задняя группа ядер включает заднее гипоталамическое ядро, а также ме­диальные и латеральные ядра сосцевидного тела. 4.  К дорсальной группе относятся ядра чечевицеобразной петли. Ядра гипоталамуса имеют ассоциативные связи между собой и с другими отделами мозга, в частности с лобными долями, лимбическими структура-     Рис. 12.4. Сагиттальный срез гипоталамуса. 1 — паравентрикулярное ядро; 2 — сосцевидно-таламический пучок; 3 — дорсомеди-альное гипоталамическое ядро; 4 — вентромедиальное гипоталамическос ядро, 5 — мост мозга; 6 — супраоптический гипофизарный путь; 7 — нейрогипофиз; 8 — аде-ногипофиз; 9 — гипофиз; 10 — зрительный перекрест; 11 — супраоптичсское ядро; 12 — преоптическое ядро. ми больших полушарий, различными отделами обонятельного анализатора, таламусами, образованиями экстрапирамидной системы, ретикулярной фор­мацией ствола мозга, ядрами черепных нервов. Большинство этих связей — двусторонние. Ядра гипоталамической области связывают с гипофизом про­ходящий через воронку серого бугра и ее продолжение — гипофизарную ножку — гипоталамо-гипофизарный пучок нервных волокон и густая сеть сосудов. Гипофиз (hypophisis) представляет собой неоднородное образование. Он раз­вивается из двух разных зачатков. Передняя, большая, его доля (аденогипофиз) формируется из эпителия первичной ротовой полости или так называемого кармана Ратке; она имеет железистое строение. Задняя доля состоит из нер­вной ткани (нейрогипофиз) и представляет собой непосредственное продолже­ние воронки серого бугра. Кроме передней и задней долей, в гипофизе раз­личают среднюю, или промежуточную, долю, представляющую собой узкую эпителиальную прослойку, содержащую пузырьки (фолликулы), наполненные серозной или коллоидной жидкостью. По функции структуры гипоталамуса делят на неспецифические и специ­фические. Специфические ядра обладают способностью выделять химические соединения, обладающие эндокринной функцией, регулирующие, в частнос­ти, метаболические процессы в организме и поддержание гомеостаза. К спе­цифическим относят обладающие способностью к нейрокринии супраопти-ческое и паравентрикулярное ядра, связанные с нейрогипофизом с помощью супраоптико-гипофизарного пути. Они продуцируют гормоны вазопрессин и окситоцин, которые по упомянутому пути переносятся через ножку гипофиза в нейрогипофиз. Вазопрессин, или антидиуретический гормон (АДГ), продуцируемый главным образом клетками супраоптического ядра, очень чувствителен к изменению солевого состава крови и регулирует водный метаболизм, стимулируя резор­бцию воды в дистальном отделе нефронов. Таким образом, АДГ регулирует концентрацию мочи. При дефиците этого гормона в связи с поражением упо­мянутых ядер увеличивается количество выделяемой мочи с низкой относи­тельной плотностью — развивается несахарный диабет, при котором наряду с полиурией (до 5 л мочи и более) возникает сильная жажда, ведущая к потреб­лению большого количества жидкости (полидипсия). Окситоцин продуцируется паравентрикулярными ядрами, он обеспечивает сокращения беременной матки и влияет на секреторную функцию молочных желез. Кроме того, в специфических ядрах гипоталамуса образуются «освобождаю­щие» факторы (рилизинг-факторы) и «ингибирующие» факторы, поступающие из гипоталамуса в переднюю долю гипофиза по бугорно-гипофизарному пути (tractus tuberoinfundibularis) и портальной сосудистой сети гипофизарной нож­ки. Попадая в гипофиз, указанные факторы регулируют секрецию гормонов, вы­деляемых железистыми клетками передней доли гипофиза. Клетки аденогипофиза, продуцирующие гормоны под влиянием поступа­ющих в него рилизинг-факторов, являются крупными и хорошо окрашива­ющимися (хромофильными), при этом большая часть из них окрашивается кислыми красками, в частности эозином. Их называют эозинофильными, или оксифильными, а также альфа-клетками. Они составляют 30—35% всех клеток аденогипофиза и продуцируют соматотропный гормон (СТГ)* или гормон роста (ГР), а также пролактин (ПРЛ). Клетки аденогипофиза (5—10%), окрашива­ющиеся щелочными (основными, базисными) красками, в том числе гема­токсилином, называются базофильными клетками, или бета-клетками. Они выделяют адренокортикотропный гормон (АКТГ) и тиреотропный гормон (TIT). Около 60% клеток аденогипофиза плохо воспринимают краски (хромофобные клетки, или гамма-клетки) и не обладают гормоносекреторной функцией. Источниками кровоснабжения гипоталамуса и гипофиза являются ветви артерий, составляющих артериальный круг большого мозга (circulus arteriosis cerebri, виллизиев круг), в частности гипоталамические ветви средней мозго­вой и задней соединительной артерий, при этом кровоснабжение гипоталаму­са и гипофиза оказывается исключительно обильным. В I мм3 ткани серого вещества гипоталамуса насчитывается в 2—3 раза больше капилляров, чем в таком же объеме ядер черепных нервов. Кровоснабжение гипофиза представлено так называемой воротной (портальной) сосудистой системой. Отходящие от ар­териального круга артерии разделяются на артериолы, затем образуют густую первичную артериальную сеть. Обилие сосудов гипоталамуса и гипофиза обеспе­чивает происходящую здесь своеобразную интеграцию функций нервной, эндокрин­ной и гуморальной систем. Сосуды гипоталамической области и гипофиза об­ладают высокой проницаемостью для различных химических и гормональных ингредиентов крови, а также белковых соединений, в том числе нуклеопроте-идов, нейротропных вирусов. Это определяет повышенную чувствительность гипоталамической области к воздействию разнообразных вредных факторов, попадающих в сосудистое русло, что необходимо хотя бы для обеспечения скорейшего их выведения из организма с целью поддержания гомеостаза. Гипофизарные гормоны выделяются в кровяное русло и гематогенным путем, достигая соответствующих мишеней. Существует мнение, что частично они попадают в ликворные пути, прежде всего в III желудочек мозга. Эндокринные функции гипоталамуса и гипофиза регулируются нервной сис­темой. Продуцируемые в них гормоны можно отнести к лигандам — биологичес­ки активным веществам, носителям регулирующей информации. Мишенью для них служат специализированные рецепторы органов и тканей. Поэтому гормоны можно рассматривать как своеобразные медиаторы, которые могут передавать информацию на большие расстояния гематогенным путем. В таких случаях этот путь рассматривают как гуморальное колено сложных рефлекторных дуг, обес­печивающих деятельность отдельных органов и тканей на периферии. Кстати, информация о деятельности этих органов и тканей направляется в структуры центральной нервной системы, в частности гипоталамуса, по нервным аффе­рентным путям, а также гематогенным путем, по которому с периферии в центр передается информация о степени активности различных периферических же­лез внутренней секреции (процесс обратной афферентации). Такая трактовка роли гормонов исключает представления об автономности эндокринной системы и подчеркивает взаимосвязь и взаимозависимость эн­докринных желез и нервной ткани. Гипоталамические структуры осуществляют регуляцию функций симпати­ческого и парасимпатического отделов вегетативной нервной системы и под­держание в организме вегетативного баланса, при этом в гипоталамусе могут быть выделены эрготропные и трофические зоны (Hess W., 1881 — 1973). Эрготропная система активирует физическую и психическую деятельность, обеспечивая включение преимущественно симпатических аппаратов вегета­тивной нервной системы. Трофотропная система способствует накоплению энергии, пополнению затраченных энергетических ресурсов, обеспечивает процессы парасимпатической направленности: тканевый анаболизм, умень­шение частоты сердечных сокращений, стимуляцию функции пищеваритель­ных желез, снижение мышечного тонуса и пр. Трофотропные зоны находятся главным образом в передних отделах гипо­таламуса, прежде всего в его преоптической зоне, эрготропные — в задних отделах, точнее, в задних ядрах и латеральной зоне, которые В. Гесс назвал динамогенными. Дифференциация функций различных отделов гипоталамуса имеет функ­ционально-биологическое значение и определяет их участие в осуществлении целостных поведенческих актов.

ЭПИТАЛАМУС

Эпиталамус (epithalamus, надбугорье) можно рассматривать как непосредс­твенное продолжение крыши среднего мозга. К эниталамусу принято относить заднюю эпиталамическую спайку (commissura epithalamica posterior), два по­водка (habenulae) и их спайку {commissura habenularum), а также шишковидное тело (corpus pineale, эпифиз). Эпиталамическая спайка располагается над верхней частью водопровода мозга и представляет собой комиссуральный пучок нервных волокон, который берет начало от ядер Даркшевича и Кахаля. Впереди от этой спайки распо­ложено непарное шишковидное тело, имеющее вариабельные размеры (при этом длина его не превышает 10 мм) и форму конуса, обращенного вершиной назад. Основание шишковидного тела образовано нижней и верхней мозго­выми пластинками, которые окаймляют выворот шишковидного тела (recessus pinealis) — выступающую верхнезаднюю часть третьего желудочка мозга. Ниж­няя мозговая пластинка продолжается назад и переходит в эпиталамическую спайку и пластинку четверохолмия. Передняя часть верхней мозговой плас­тинки переходит в спайку поводков, от конца которой отходят направляющие­ся вперед поводки, называемые иногда ножками шишковидного тела. Каждый из поводков тянется к зрительному бугру и на границе верхней и внутренней его поверхности заканчивается треугольным расширением, находящимся над расположенным уже в веществе таламуса небольшим ядром уздечки. От ядра уздечки вдоль задненаружной поверхности таламуса тянется белая полоска — stria medullaris, состоящая из волокон, соединяющих шишковидное тело со структурами обонятельного анализатора. В связи с этим существует мнение о том, что эпиталамус имеет отношение к обонянию. В последнее время установлено, что отделы эпиталамуса, главным образом шишковидное тело, продуцируют физиологически активные вещества — серо-тонин, мелатонин, адреногломерулотропин и антигипоталамический фактор. Шишковидное тело представляет собой железу внутренней секреции. Оно имеет дольчатое строение, паренхима его состоит из пинеоцитов, эпителиаль- ных и глиальных клеток. Шишковидное тело содержит большое количество кровеносных сосудов, кровоснабжение его обеспечивается ветвями задних моз­говых артерий. Подтверждает эндокринную функцию эпифиза и его высокая способность к поглощению радиоактивных изотопов 32Р и 13Ч. Он поглошает радиоактивного фосфора больше, чем любой другой орган, а по количеству поглощаемого радиоактивного йода уступает только щитовидной железе. До периода полового созревания клетки шишковидного тела выделяют вещества, тормозящие действие гонадотропного гормона гипофиза, и в связи с этим за­держивают развитие половой сферы. Это подтверждают клинические наблюде­ния преждевременного полового созревания при заболеваниях (главным обра­зом при опухолях) шишковидного тела. Существует мнение, что шишковидное тело находится в состоянии антагонистической корреляции со щитовидной железой и надпочечниками и влияет на обменные процессы, в частности на витаминный баланс и функцию вегетативной нервной системы. Некоторое практическое значение имеет наблюдаемое после полового со­зревания отложение в шишковидном теле солей кальция. В связи с этим на краниограммах взрослых людей видна тень обызвествленного шишковидного тела, которое при объемных патологических процессах (опухоль, абсцесс и т.п.) в полости супратенториального пространства может смещаться в сторону, про­тивоположную патологическому процессу.

Изменения функций зрительной системы при поражении различных ее отделов

Поражение зрительного нерва ведет к нарушению функций глаза на сто­роне патологического очага, при этом отмечается снижение остроты зрения, сужение поля зрения, чаще по концентрическому типу, иногда выявляются патологические скотомы, со временем возникают признаки первичной нисхо­дящей атрофии диска зрительного нерва, нарастание которых сопровождается прогрессирующим снижением остроты зрения, при этом возможно развитие слепоты. Надо иметь в виду, что чем проксимальнее расположена зона пора­жения зрительного нерва, тем позднее наступает атрофия его диска. В случае поражения зрительного нерва, ведущего к слепоте глаза, оказы­вается несостоятельной афферентная часть дуги зрачкового рефлекса на свет, в связи с этим прямая реакция зрачка на свет оказывается нарушенной, тог­да как содружественная реакция зрачка на свет сохранна. Ввиду отсутствия прямой реакции зрачка на свет (его сужения под влиянием нарастающей ос­вещенности) возможна анизокория, так как не реагирующий на свет зрачок слепого глаза не сужается при нарастании освещенности. Острое одностороннее снижение зрения у молодых пациентов, если это не обусловлено поражением сетчатой оболочки глаза, скорее всего, является следствием демиелинизации зрительного нерва (ретробульбарный неврит). У больных пожилого возраста снижение зрения может быть обусловлено нару­шениями кровообращения в сетчатке или зрительном нерве. При височном артериите возможна ишемическая ретинопатия, при этом обычно определяет­ся высокая СОЭ; диагностике могут способствовать результаты биопсии стен­ки наружной височной артерии. При подострых расстройствах зрения, с одной стороны, надо иметь в виду и возможность наличия онкологической патологии, в частности опухоли зри­тельного нерва или близко к нему расположенных тканей. В таком случае целесообразно исследовать состояние глазницы, канала зрительного нерва, об­ласти хиазмы с помощью краниографии, КТ и МРТ. Причиной острого или подострого двустороннего снижения зрения может быть токсическая невропатия зрительных нервов, в частности отравление ме­танолом. Поражение перекреста зрительных нервов (хиазмы) ведет к двустороннему нарушению полей зрения, может обусловить также снижение остроты зрения. Со временем в связи с нисходящей атрофией зрительных нервов в таких слу­чаях развивается первичная нисходящая атрофия дисков зрительных нервов, при этом течение и характер расстройств зрительных функций зависят от пер­вичной локализации и темпа поражения хиазмы. Если поражена централь­ная часть хиазмы, что нередко бывает при сдавливании ее опухолью, обычно аденомой гипофиза, то сначала повреждаются перекрещивающиеся в хиазме волокна, идущие от внутренних половин сетчаток обоих глаз. Слепнут внут­ренние половины сетчаток, что ведет к выпадению височных половин полей зрения — развивается битемпоральная гемианопсия, при которой больной, гля­дя вперед, видит ту часть пространства, которая перед ним, и не видит, что делается по сторонам. Патологическое воздействие на наружные части хиазмы ведет к выпадению внутренних половин полей зрения — к биназадьной гемиа-нопсии (рис. 12.3).     Рис. 12.3. Изменения полей зрения при поражении различных отделов зрительного анализатора (по Гомансу). а — при поражении зрительного нерва слепота на той же стороне; б — поражение цент­ральной части хиазмы — двусторонняя гемианопсия с височной стороны (битемпоральная гемианопсия); в — поражение наружных отделов хиазмы с одной стороны — назальная ге­мианопсия на стороне патологического очага; г — поражение зрительного тракта — изме­нение обоих полей зрения по типу гомонимной гемианопсии на стороне, противополож­ной очагу поражения; д, е — частичное поражение зрительной лучистости — верхне- или нижнеквадрантная гемианопсия на противоположной стороне; ж — поражение коркового конца зрительного анализатора (шпорной борозды затылочной доли) — на противополож­ной стороне гомонимная гемианопсия с сохранением центрального зрения. Дефекты полей зрения, обусловленные сдавлением хиазмы, могут быть следствием роста краниофарингиомы, аденомы гипофиза или менингиомы бугорка турецкого седла, а также сдавления хиазмы артериальной аневризмой. С целью уточнения диагноза при характерных для поражения хиазмы измене­ниях полей зрения показаны краниография, КТ или МРТ-сканирование, а при подозрении на развитие аневризмы — ангиографическое исследование. Тотальное поражение хиазмы ведет к двусторонней слепоте, при этом вы­падают прямая и содружественная реакции зрачков на свет. На глазном дне с обеих сторон в связи с нисходящим атрофическим процессом со временем развиваются признаки первичной атрофии дисков зрительных нервов. В случае поражения зрительного тракта на противоположной стороне обыч­но возникает неконгруэнтная (неидентичная) гомонимная гемианопсия на стороне, противоположной патологическому очагу. Со временем на глазном дне появляются признаки частичной первичной (нисходящей) атрофии дисков зрительных нервов, преимущественно на стороне очага поражения. Возмож­ность атрофии дисков зрительных нервов сопряжена с тем, что зрительные тракты составляют аксоны, участвующие в формировании дисков зрительных нервов и являющиеся отростками ганглионарных клеток, расположенных в сетчатой оболочке глаз. Причиной поражения зрительного тракта может быть базальный патологический процесс (базальный менингит, аневризма, кранио-фарингиома и др.). Поражение подкорковых зрительных центров, прежде всего латерального коленчатого тела, также вызывает гомонимное неконгруэнтное гемианопси-ческое, или секторальное выпадение полей зрения на стороне, противополож­ной патологическому очагу, при этом обычно изменяются реакции зрачков на свет. Такие расстройства возможны, в частности, при нарушении крово­обращения в бассейне передней ворсинчатой артерии (a. chorioidea anterior, ветвь внутренней сонной артерии) или в бассейне задней ворсинчатой артерии (a. chorioidea posterior, ветвь задней мозговой артерии), обеспечивающих крово­снабжение латерального коленчатого тела. Нарушение функции зрительного анализатора за латеральным коленча­тым телом — зачечевичной части внутренней капсулы, зрительной лучистости (пучка Грациоле) или проекционной зрительной зоны (кора медиальной по­верхности затылочной доли в области шпорной борозды, поле 17, по Бродма-ну) также ведет к полной или неполной гомонимной гемианопсии на стороне, противоположной патологическому очагу, при этом гемианопсия, как прави­ло, конгруэнтная. В отличие от гомонимной гемианопсии при поражении зри­тельного тракта в случае поражения внутренней капсулы, зрительной лучис­тости или коркового конца зрительного анализатора гомонимная гемианопсия не ведет к атрофическим изменениям на глазном дне и изменению зрачковых реакций, так как в таких случаях нарушение зрения обусловлено наличием очага поражения, расположенного позади подкорковых зрительных центров, и зоны замыкания рефлекторных дуг зрачковых реакций на свет. Волокна зрительной лучистости расположены в строгом порядке. Нижняя часть ее, проходящая через височную долю мозга, состоит из волокон, несу­щих импульсы от нижних отделов одноименных половин сетчаток. Они закан­чиваются в коре нижней губы шпорной борозды. При их поражении выпадают верхние части противоположных патологическому очагу половин полей зре­ния или возникает одна из разновидностей квадрантной гемианопсии, в данном случае — верхняя квадрантная гемианопсия на стороне, противоположной па- тологическому очагу. При поражении верхних отделов зрительной лучистости (пучков, проходящих частично через теменную долю и идущих к верхней губе шпорной борозды на стороне, противоположной патологическому процессу) возникает нижняя квадрантная гемианопсия. При поражении коркового конца зрительного анализатора больной обыч­но не осознает дефекта полей зрения (возникает неосознаваемая гомонимная гемианопсия), тогда как нарушение функций любого другого отдела зритель­ного анализатора ведет к дефекту полей зрения, которые осознаются больным (осознаваемая гемианопсия). Кроме того, при корковой неосознаваемой геми-анопсии сохраняется зрение в зоне проекции на нее макулярного пучка. При раздражении, обусловленном патологическим процессом коркового конца зрительного анализатора, в противоположных половинах полей зрения могут возникать галлюцинации в виде мелькания точек, кругов, искр, извес­тные под названием «простые фотомы» или «фотопсии». Фотопсии нередко бывают предвестником приступа офтальмической формы мигрени, могут со­ставлять зрительную ауру эпилептического припадка.

Исследование зрительного анализатора

В неврологической практике наиболее значимы сведения об остроте зрения (visus), о состоянии полей зрения и о результатах офтальмоскопии, в процессе которой возможен осмотр глазного дна и визуализация при этом диска зри­тельного нерва. При необходимости возможно и фотографирование глазного дна. Острота зрения. Исследование остроты зрения обычно проводится по спе­циальным таблицам Д.А. Сивцева, состоящим из 12 строк букв (для негра­мотных — незамкнутые кольца, для детей — контурные рисунки). Нормально видящий глаз на расстоянии 5 м от хорошо освещенной таблицы четко диф­ференцирует буквы, составляющие ее 10-ю строку. В таком случае зрение при­знается нормальным и условно принимается за 1,0 (visus = 1,0). Если пациент различает на расстоянии 5 м лишь 5-ю строку, то visus = 0,5; если он читает только 1-ю строку таблицы, то visus = 0,1 и т.д. Если пациент на расстоянии 5 м не дифференцирует входящие в состав 1-й строки изображения, то можно приближать его к таблице до тех пор, пока он не станет различать составля­ющие ее буквы или рисунки. В связи с тем, что штрихи, которыми нарисова­ны буквы первой строки, имеют толщину, приблизительно равную толщине пальца, врач нередко при проверке зрения у слабовидящих показывает им пальцы своей руки. Если больной различает пальцы врача и может сосчитать их на расстоянии 1 м, то visus исследуемого глаза считается равным 0,02, при возможности считать пальцы лишь на расстоянии 0,5 м visus = 0,01. Если visus еще ниже, то больной различает пальцы обследующего лишь при еще большем приближении пальцев, тогда обычно говорят, что он «считает пальцы у лица». Если же больной не различает пальцы и на очень близком расстоянии, но указывает на источник света, говорят о наличии у него правильной или непра­вильной проекции света. В таких случаях visus обычно обозначается дробью /бесконечность* чт0 означает: visus бесконечно мал. При оценке остроты зрения, если почему-либо visus определяется не с рас­стояния 5 м, можно пользоваться формулой Снеленна: V = d/D, где V — visus, d — расстояние от исследуемого глаза до таблицы, a D — расстояние, с кото­рого штрихи, составляющие буквы, различимы под углом в Г, — этот показа­тель указан в начале каждой строки таблицы Сивцева. Visus всегда должен определяться для каждого глаза в отдельности, другой глаз при этом прикрывается. Если при обследовании выявлено снижение ос­троты зрения, то необходимо выяснить, не является ли оно следствием чисто офтальмологической патологии, в частности аномалии рефракции. В процессе проверки остроты зрения в случае наличия у больного аномалии рефракции (миопия, гиперметропия, астигматизм) необходима ее коррекция с помощью очковых стекол. В связи с этим пациент, который обычно пользуется очками, при проверке остроты зрения должен надеть их. Снижение зрения обозначается термином «амблиопия», слепота — «амавроз». Поле зрения. Каждый глаз видит лишь часть окружающего пространс­тва — поле зрения, границы которого находятся под определенным углом от оптической оси глаза. А.И. Богословский (1962) дал этому пространству сле­дующее определение: «Все поле, которое одновременно видит глаз, фиксируя неподвижным взором и при неподвижном положении головы определенную точку в пространстве, и составляет его поле зрения». Видимую глазом часть пространства, или поле зрения, можно очертить на осях координат и допол­нительных диагональных осях, переводя при этом угловые градусы в линейные единицы измерения. В норме наружная граница поля зрения составляет 90°, верхняя и внутренняя — 50—60°, нижняя — до 70°. В связи с этим изображен­ное на графике поле зрения имеет форму неправильного эллипса, вытянутого кнаружи (рис. 12.2). Поле зрения, как и visus, проверяется для каждого глаза отдельно. Вто­рой глаз во время обследования прикрывается. Для исследования поля зрения пользуются периметром, первый вариант которого был предложен в 1855 г. не­мецким офтальмологом A. Grefe (1826—I870). Существуют различные его ва­рианты, но в большинстве случаев каждый из них имеет вращающуюся вокруг центра градуированную дугу с двумя метками, одна из которых неподвижна и находится в центре дуги, другая перемещается по дуге. Первая метка служит     Рис. 12.2. Нормальное поле зрения. Пунктиром изображено поле зрения на белый цвет, цветными линиями — на соответс­твующие цвета. для фиксации на ней обследуемого глаза, вторая, подвижная, — для определе­ния границ его поля зрения. При неврологической патологии могут быть различные формы сужения по­лей зрения, в частности по концентрическому типу и по типу гемианопсии (вы­падение половины поля зрения), или квадрантной гемианопсии (выпадение верхней или нижней части половины поля зрения). Кроме того, в процессе периметрии или кампиметрии1 могут выявляться скотомы — невидимые боль­ным участки поля зрения. Надо иметь в виду обязательное наличие в поле зрения здорового глаза небольшой физиологической скотомы (слепого пятна) в 10-15° латеральнее от центра поля, представляющей собой проекцию участка глазного дна, занятого диском зрительного нерва и потому лишенного фото­рецепторов. Ориентировочное представление о состоянии полей зрения можно полу­чить и предложив пациенту фиксировать исследуемый глаз на расположен­ной перед ним определенной точке, после чего вводить в поле зрения или выводить из него какой-либо предмет, выявляя при этом момент, когда этот предмет становится видимым или исчезающим. Границы поля зрения в таких случаях, конечно же, определяются приблизительно. Выпадение одноименных (правых или левых) половин полей зрения (гомо-нимная гемианопсия) можно выявить, попросив больного, смотрящего перед собой, разделить пополам развернутое перед ним в горизонтальной плоскости полотенце (проба с полотенцем). Больной в случае наличия у него гемианопсии делит пополам лишь видимую им часть полотенца и в связи с этим оно разде­ляется на неравные отрезки (при полной гомонимной геминанопсии их соот­ношение равно 1:3). Проба с полотенцем может быть проверена, в частности, и у больного, находящегося в горизонтальном положении. Диск зрительного нерва. Состояние глазного дна, в частности диска зритель­ного нерва, выявляется при его осмотре с помощью офтальмоскопа. Офталь­москопы могут быть разной конструкции. Простейшим является зеркальный офтальмоскоп, состоящий из зеркала-отражателя, отражающего луч света на сетчатку. В центре этого зеркала имеется небольшое отверстие, через которое врач рассматривает сетчатую оболочку глаза. Для увеличения ее изображения пользуются лупой в 13 или 20 дптр. Лупа представляет собой двояковыпуклую линзу, поэтому врач видит через нее перевернутое (обратное) изображение осматриваемого участка сетчатки. Более совершенными являются прямые безрефлексные электрические оф­тальмоскопы. Большие безрефлексные офтальмоскопы дают возможность не только осмотреть, но и сфотографировать глазное дно. В норме диск зрительного нерва круглый, розовый, имеет четкие границы. От центра диска зрительного нерва в радиальном направлении расходятся ар­терии (ветви центральной артерии сетчатки), к центру диска сходятся вены сетчатки. Диаметры артерий и вен в норме соотносятся между собой как 2:3. Волокна, идущие от желтого пятна и обеспечивающие центральное зрение, вступают в зрительный нерв с височной стороны и, лишь пройдя некоторое расстояние, смещаются в центральную часть нерва. Атрофия макулярных, т.е. идущих от желтого пятна, волокон вызывает характерное побледнение висон- 1 Метод выявления скотом; заключается в регистрации восприятия фиксированным глазом объектов, перемещающихся по черной поверхности, расположенной во фрон­тальной плоскости на расстоянии 1 м от исследуемого глаза. ной половины диска зрительного нерва, которое может сочетаться с ухудшени­ем центрального зрения, тогда как периферическое зрение при этом остается сохранным (возможный вариант нарушения зрения, в частности, при обос­трении рассеянного склероза). При повреждении периферических волокон зрительного нерва в экстраорбитальной зоне характерно концентрическое су­жение зрительного ноля. При поражении аксонов ганглиозных клеток на любом участке их следо­вания до хиазмы (зрительный нерв) со временем наступает дегенерация диска зрительного нерва, называющаяся в таких случаях первичной атрофией диска зрительного нерва. Диск зрительного нерва сохраняет свои размеры и форму, но цвет его бледнеет и может стать серебристо-белым, сосуды его при этом запустевают. При поражении проксимальных отделов зрительных нервов и особенно хи­азмы признаки первичной атрофии дисков развиваются позднее, при этом атрофический процесс постепенно распространяется в проксимальном на­правлении — нисходящая первичная атрофия. Поражение хиазмы и зрительно­го тракта может вести к сужению полей зрения, при этом поражение хиазмы в большинстве случаев сопровождается частичной или полной гетеронимной гемианопсией. При полном поражении хиазмы или двустороннем тотальном поражении зрительных трактов со временем должны развиться слепота и пер­вичная атрофия дисков зрительных нервов. Если же у больного повышается внутричерепное давление, то нарушается венозный и лимфатический отток из диска зрительного нерва, что ведет к развитию в нем признаков застоя (застойного диска зрительного нерва). Диск при этом отекает, увеличивается в размере, границы его становятся размы­тыми, отечная ткань диска может выстоять в стекловидное тело. Артерии диска зрительного нерва сужаются, вены же оказываются расширенными и переполненными кровью, извитыми. При резко выраженных явлениях за­стоя возможны кровоизлияния в ткань диска зрительного нерва. Развитию застойных дисков зрительных нервов при внутричерепной гипертензии пред­шествует выявляемое при кампиметрии увеличение слепого пятна (Федо­ров С. Н., 1959). Застойные диски зрительных нервов, если не устраняется причина внут­ричерепной гипертензии, со временем могут переходить в состояние вторич­ной атрофии, при этом размеры их постепенно уменьшаются, приближаясь к нормальным, границы становятся более четкими, цвет — бледным. В таких случаях говорят о развитии атрофии дисков зрительных нервов после застоя или о вторичной атрофии дисков зрительных нервов. Развитие вторичной атро­фии дисков зрительных нервов у больного с выраженной внутричерепной ги-пертензией иногда сопровождается уменьшением гипертензионной головной боли, что можно объяснить параллельным развитием дегенеративных измене­ний в рецепторном аппарате мозговых оболочек и других тканей, находящихся в полости черепа. Офтальмоскопическая картина застоя на глазном дне и неврита зритель­ного нерва имеет много общих черт, но при застое острота зрения длительно (в течение нескольких месяцев) может оставаться нормальной или близкой к норме и снижается лишь при развитии вторичной атрофии зрительных нервов, а при неврите зрительного нерва острота зрения падает остро или подостро и весьма значительно, вплоть до слепоты.

Анатомо-физиологические основы зрения

Световые лучи, несущие информацию об окружающем пространстве, про­ходят через преломляющие среды глаза (роговицу, хрусталик, стекловидное тело) и воздействуют на рецепторы зрительного анализатора, располагающи­еся в сетчатой оболочке глаза; при этом изображение видимого пространства проецируется на сетчатку в перевернутом виде. Зрительные рецепторы (рецепторы световой энергии) представляют собой нейроэпителиальные образования, известные под названием палочек и колбо­чек, которые обеспечивают возникающие под влиянием света фотохимичес­кие реакции, преобразующие энергию света в нервные импульсы. В сетчатой оболочке глаза человека колбочек около 7 млн, палочек — приблизительно 150 млн. Колбочки обладают наиболее высокой разрешающей способностью и обеспечивают в основном дневное и цветное зрение. Они сконцентрированы главным образом в участке сетчатой оболочки, известном как пятно (macula), или желтое пятно. Пятно занимает приблизительно 1% площади сетчатки. Палочки и колбочки расцениваются как специализированный нейроэпите-лий, имеющий сходство с клетками эпендимы, выстилающей желудочки моз­га. Этот светочувствительный нейроэпителий находится в одном из наружных слоев сетчатки, в области желтого пятна, в расположенной в его центре ямке сконцентрировано особенно большое количество колбочек, что делает его местом наиболее ясного зрения. Импульсы, возникающие в наружном слое сетчатки, достигают расположенных во внутренних слоях сетчатки промежу­точных, главным образом биполярных нейронов, а затем и ганглиозных не­рвных клеток. Аксоны ганглиозных клеток радиально сходятся к одному учас­тку сетчатки, находящемуся медиальнее пятна, и формируют диск зрительного нерва, по сути, его начальный отрезок. Зрительный нерв, п. opticus (II черепной нерв) состоит из аксонов гангли­озных клеток сетчатой оболочки, выходит из глазного яблока вблизи от его заднего полюса, проходит через ретробульбарную клетчатку. Ретробульбарная (глазничная) часть зрительного нерва, находящаяся в пределах глазницы, име­ет длину около 30 мм. Зрительный нерв здесь покрыт всеми тремя мозговыми оболочками: твердой, паутинной и мягкой. Далее он покидает глазницу через расположенное в ее глубине зрительное отверстие и проникает в среднюю че­репную ямку (рис. 12.1). Внутричерепная часть зрительного нерва более короткая (от 4 до 17 мм) и покрыта лишь мягкой мозговой оболочкой. Зрительные нервы, подходя к диафрагме турецкого седла, сближаются и образуют неполный зрительный пе­рекрест (chiasma opticum). В хиазме перекрест совершают только те волокна зрительных нервов, кото­рые передают импульсы от внутренних половин сетчатой оболочки глаз. Ак­соны же ганглиозных клеток, находящихся в латеральных половинах сетчатки, не подвергаются перекресту и, проходя через хиазму, лишь огибают снаружи участвующие в формировании перекреста волокна, составляя его латеральные отделы. Нервные волокна, несущие зрительную информацию от желтого пят­на, составляют около /3 волокон зрительного нерва; проходя в составе хиазмы, они также совершают частичный перекрест, разделяясь на перекрещенные и прямые волокна макулярного пучка. Кровоснабжение зрительных нервов и хиазмы обеспечивают ветви глазной артерии (a. ophtalmica).       Рис. 12.1. Зрительный анализатор и реф­лекторная дуга зрачкового рефлекса. 1 — сетчатка глаза; 2 — зрительный нерв; 3 — хиазма; 4 — зрительный тракт; 5 — клетки наружного коленчатого тела; 6 — зрительная лучистость {пучок Грациоле); 7 — корковая проекционная зрительная зона — шпорная борозда; 8 — переднее двухолмие; 9 — ядра глазодвигательного (III) нерва; 10 — вегетативная часть гла­зодвигательного (III) нерва; И — реснич­ный узел.   Пройдя через хиазму, аксоны ган-глиозных клеток образуют два зри­тельных тракта, каждый из которых состоит из нервных волокон, несу­щих импульсы от одноименных поло­вин сетчаток обоих глаз. Зрительные тракты проходят по основанию мозга и достигают наружных коленчатых тел, являющихся подкорковыми зри­тельными центрами. В них заканчи­ваются аксоны ганглиозных клеток сетчатки, и импульсы переключаются на следующие нейроны. Аксоны ней­ронов каждого латерального коленча­того тела проходят через зачечевид- ную часть (pars retrolenticularis) внутренней капсулы и формируют зрительную лучистость (radiatio optica), или пучок Грациоле, который участвует в формиро­вании белого вещества височной и в меньшей степени теменной долей мозга, затем его затылочной доли и заканчивается в корковом конце зрительного анализатора, т.е. в первичной зрительной коре, расположенной главным обра­зом на медиальной поверхности затылочной доли в области шпорной борозды (поле 17, по Бродману). Следует подчеркнуть, что на всем протяжении зрительных путей от диска зрительного нерва до проекционной зоны в коре большого мозга зрительные волокна расположены в строгом ретинотопическом порядке. Зрительный нерв принципиально отличается от черепных нервов стволо­вого уровня. Это, по сути, даже не нерв, а выдвинутый вперед на периферию мозговой тяж. Составляющие его волокна не имеют характерной для перифе­рического нерва шванновской оболочки, дистальнее места выхода зрительного нерва их глазного яблока ее заменяет миелиновая оболочка, формирующаяся из оболочки прилежащих к нервным волокнам олигодендроцитов. Такое стро­ение зрительных нервов объяснимо, если учесть, что в процессе онтогене- за зрительные нервы образуются из стеблей (ножек) так называемых глазных пузырей, представляющих собой выпячивания передней стенки первичного переднего мозгового пузыря, которые трансформируются в дальнейшем в сет­чатую оболочку глаз.

МЕТАТАЛАМУС

Метаталамус (metathaiamus, забугорье) составляют медиальные и латераль­ные коленчатые тела, расположенные под задней частью подушки таламуса, выше и латеральнее верхних холмиков четверохолмия. Медиальное коленчатое тело (corpus geniculatum medialis) содержит клеточ­ное ядро, в котором заканчивается латеральная (слуховая) петля. Нервными волокнами, составляющими нижнюю ручку четверохолмия (brachium coUiculi inferioris), оно связано с нижними холмиками четверохолмия и вместе с ними образует подкорковый слуховой центр. Аксоны клеток, заложенные в подкорко­вом слуховом центре, главным образом в медиальном коленчатом теле, направ­ляются к корковому концу слухового анализатора, расположенному в верхней височной извилине, точнее в коре находящихся на ней мелких извилин Гешля (поля 41, 42, 43, по Бродману), при этом слуховые импульсы передаются к проекционному слуховому полю коры в тонотопическом порядке. Поражение медиального коленчатого тела ведет к снижению слуха, более выраженному на противоположной стороне. Поражение обоих медиальных коленчатых тел может обусловить глухоту на оба уха. При поражении медиальной части метаталамуса может проявиться кли­ническая картина синдрома Франкль—Хохварта, для которого характерны двустороннее снижение слуха, нарастающее и ведущее к глухоте, и атак­сия, сочетающиеся с парезом взора вверх, концентрическим сужением по­лей зрения и признаками внутричерепной гипертензии. Описал этот синд­ром при опухоли эпифиза австрийский невропатолог L. Frankl—Chochwart (1862-1914). Латеральное коленчатое тело (corpus geniculatum laterale), как и верхние буг­ры четверохолмия, с которыми оно связано верхними ручками четверохол­мия (brachii coUiculi superiores), состоит из чередующихся слоев серого и белого вещества. Латеральные коленчатые тела составляют подкорковый зрительный центр. Главным образом в них заканчиваются зрительные тракты. Аксоны кле­ток латеральных коленчатых тел проходят компактно в составе заднего отдела заднего бедра внутренней капсулы, а затем формируют зрительную лучистость (radiatio optica), по которой зрительные импульсы достигают в строгом ретино-топическом порядке коркового конца зрительного анализатора — в основном область шпорной борозды на медиальной поверхности затылочной доли (поле 17, по Бродману). На вопросах, связанных со строением, функцией, методами обследования зрительного анализатора, а также со значением патологии, выявляемой при его обследовании, для топической диагностики следует остановиться подроб­нее, так как многие структуры, входящие в состав зрительной системы, имеют прямое отношение к промежуточному мозгу и в процессе онтогенеза форми­руются из первичного переднего мозгового пузыря.

ТАЛАМУСЫ

Таламусы (thalami), или зрительные бугры, расположены по бокам III же­лудочка и составляют до 80% массы промежуточного мозга. Они имеют яй­цевидную форму, приблизительный объем 3,3 куб. см и состоят из клеточных скоплений (ядер) и прослоек белого вещества. В каждом таламусе различают четыре поверхности: внутреннюю, наружную, верхнюю и нижнюю. Внутренняя поверхность таламуса образует боковую стенку III желудочка. От расположенного ниже подбугорья она отделена неглубокой гипоталами-ческой бороздой (sulcus hypothalamics), идущей от межжелудочкового отвер­стия к входу в водопровод мозга. Внутреннюю и верхнюю поверхности раз­граничивает мозговая полоска {stria medullaris thalami). Верхняя поверхность таламуса, как и внутренняя, свободна. Она прикрыта сводом и мозолистым телом, с которыми не имеет сращений. В передней части верхней поверх­ности таламуса расположен его передний бугорок, который иногда называют возвышением переднего ядра. Задний конец таламуса утолщен — это так на­зываемая подушка таламуса (pulvinar). Наружный край верхней поверхности таламуса подходит к хвостатому ядру, от которого ее отделяет пограничная полоска (stria terminalis). По верхней поверхности таламуса в косом направлении проходит сосудис­тая борозда, которую занимает сосудистое сплетение бокового желудочка. Эта борозда делит верхнюю поверхность таламуса на наружную и внутреннюю час­ти. Наружная часть верхней поверхности таламуса покрыта так называемой прикрепленной пластинкой, составляющей дно центрального отдела бокового желудочка мозга. Наружная поверхность таламуса прилежит к внутренней капсуле, отделя­ющей ее от чечевичного ядра и головки хвостатого ядра. За подушкой тала­муса расположены коленчатые тела, относящиеся к метаталамусу. Остальная часть нижней стороны таламуса сращена с образованиями гипоталамической области. Таламусы находятся на пути восходящих трактов, идущих от спинного моз­га и ствола мозга к коре больших полушарий. Они имеют многочисленные связи с подкорковыми узлами, проходящими главным образом через петлю чечевичного ядра (ansa lenticularis). В состав таламуса входят клеточные скопления (ядра), отграниченные друг от друга прослойками белого вещества. К каждому ядру подходят собствен­ные афферентные и эфферентные связи. Соседние ядра формируют группы. Выделяют: I) передние ядра (лис//, anteriores) — имеют реципрокные связи с сосцевидным телом и сводом, известные как сосцевидно-таламический пу­чок (пучок Вик дАзира) с поясной извилиной, относящиеся к лимбической системе; 2) задние ядра, или ядра подушки бугра (nucli posteriores) — связаны с ассоциативными полями теменной и затылочной областей; играют важную роль в интеграции различных видов поступающей сюда сенсорной информа­ции; 3) дорсальное боковое ядро (nucl. dorsolateral) — получает афферентные импульсы от бледного шара и проецирует их в каудальные отделы поясной извилины; 4) вентролатералъные ядра (nucli ventrolaterales) — самые крупные специфические ядра, являются коллектором большинства соматосенсорных путей: медиальная петля, спиноталамические пути, тройнично-таламические и вкусовые пути, по которым проходят импульсы глубокой и поверхностной чувствительности и др.; отсюда нервные импульсы направляются в корковую проекционную соматосенсорную зону коры (поля 1, 2, За и 36, по Бродману); 5) медиальные ядра (nucli mediates) — ассоциативные, получают афферентные импульсы от вентральных и интраламинарных таламических ядер, гипоталаму­са, ядер среднего мозга и бледного шара; эфферентные пути отсюда направля­ются в ассоциативные области префронтальной коры, расположенные впереди моторной зоны; 6) внутрипластинчатые ядра (интраламинарные ядра, nucll. intralaminares) — составляют основную часть неспецифической проекционной системы таламуса; афферентные импульсы они получают частично по восходя­щим волокнам ретикулярной формации ствола нерва, частично по волокнам, начинающимся от ядер таламуса. Исходящие от этих ядер проводящие пути направляются в хвостатое ядро, скорлупу, бледный шар, относящиеся к экс­трапирамидной системе, и, вероятно, в другие ядерные комплексы таламуса, которые затем направляют их во вторичные ассоциативные зоны коры мозга. Важной частью интраламинарного комплекса является центральное ядро та­ламуса, представляющее таламический отдел восходящей ретикулярной акти­вирующей системы. Таламусы являются своеобразным коллектором чувствительных путей, мес­том, в котором концентрируются все пути, проводящие чувствительные им­пульсы, идущие от противоположной половины тела. Кроме того, в переднее его ядро по сосцевидно-таламическому пучку поступают обонятельные им­пульсы; вкусовые волокна (аксоны вторых нейронов, расположенных в оди­ночном ядре) заканчиваются в одном из ядер вентролатеральной группы. Таламические ядра, получающие импульсы от строго определенных участ­ков тела и передающие эти импульсы в соответствующие ограниченные зоны коры (первичные проекционные зоны), называются проекционными, специфи­ческими или переключающими ядрами. К ним относятся вентролатеральные ядра. Переключающие ядра для зрительных и слуховых импульсов заложены соответственно в латеральных и медиальных коленчатых телах, прилежащих к задней поверхности зрительных бугров и составляющих основную массу забу-горья. Наличие в проекционных ядрах таламуса, прежде всего в вентролатеральных ядрах, определенного соматотопического представительства делает возможным при ограниченном по объему патологическом очаге в таламусе развитие рас­стройства чувствительности и сопряженных с этим двигательных нарушений в какой-либо ограниченной части противоположной половины тела. Ассоциативные ядра, получая чувствительные импульсы от переключаю­щих ядер, подвергают их частичному обобщению — синтезу; в результате из этих таламичсских ядер к коре большого мозга направляются импульсы, уже усложненные вследствие синтеза поступающей сюда информации. Сле­довательно, таламусы являются не только промежуточным центром пере­ключения, но могут быть и местом частичной переработки чувствительных импульсов. Кроме переключающих и ассоциативных ядер, в таламусах находятся, как уже упоминалось, интраламинарные (парафасцикулярное, срединное и меди­альное, центральные, парацентральное ядра) // ретикулярные ядра, не имею­щие специфической функции. Они рассматриваются как часть ретикулярной формации и объединяются под названием неспецифической дидЬфузной тала-мической системы. Будучи связанной с корой больших полушарий и струк­турами лимбико-ретикулярного комплекса. Эта система принимает участие в регуляции тонуса и в «настройке» коры и играет определенную роль в слож­ном механизме формирования эмоций и соответствующих им выразительных непроизвольных движений, мимики, плача и смеха. Таким образом, к таламусам по афферентным путям сходится информация практически от всех рецепторных зон. Эта информация подвергается сущес­твенной переработке. Отсюда к коре больших полушарий направляется лишь часть ее, другая же и, вероятно, большая часть принимает участие в формиро­вании безусловных и, возможно, некоторых условных рефлексов, дуги которых замыкаются на уровне таламусов и образований стриопаллидарной системы. Таламусы являются важнейшим звеном афферентной части рефлекторных дуг, обусловливающих инстинктивные и автоматизированные двигательные акты, в частности привычные локомоторные движения (ходьба, бег, плавание, езда на велосипеде, катание на коньках и т.п.). Волокна, идущие от таламуса к коре больших полушарий мозга, принима­ют участие в формировании заднего бедра внутренней капсулы и лучистого венца и образуют так называемые лучистости таламуса — переднюю, сред­нюю (верхнюю) и заднюю. Передняя лучистость связывает переднее и отчасти внутреннее и наружное ядра с корой лобной доли. Средняя лучистость тала­муса — самая широкая — связывает вентролатеральные и медиальные ядра с задними отделами лобной доли, с теменной и височной долями мозга. Задняя лучистость состоит главным образом из зрительных волокон (radiatio optica, или пучок Грациоле), идущих от подкорковых зрительных центров в заты­лочную долю, к корковому концу зрительного анализатора, расположенному в области шпорной борозды (fissura calcarina). В составе лучистого венца про­ходят и волокна, несущие импульсы от коры больших полушарий к таламусу (корково-таламические связи). Сложность организации и многообразие функций таламуса определяет поли­морфизм возможных клинических проявлений его поражения. Поражение вен-тролатеральной части таламуса обычно ведет к повышению порога чувстви­тельности на стороне, противоположной патологическому очагу, при этом меняется аффективная окраска болевых и температурных ощущений. Больной воспринимает их как трудно локализуемые, разлитые, имеющие неприятный, жгучий оттенок. Характерна в соответствующей части противоположной по­ловины тела гипалгезия в сочетании с гиперпатией, при этом особенно выра­жено расстройство глубокой чувствительности, что может вести к неловкости движений, сенситивной атаксии. При поражении заднелатеральной части таламуса может проявиться так на­зываемый таламический синдром Дежерина—Русси (описали в 1906 г. француз­ские невропатологи J. Dejerine (1849—1917) и G. Roussy (1874—1948)1, включа­ющий в себя жгучие, мучительные, подчас невыносимые таламинеские боли в противоположной половине тела в сочетании с нарушением поверхностной и особенно глубокой чувствительности, псевдоастериогнозом и сенситивной ге-миатаксией, явлениями гиперпатии и дизестезии. Таламический синдром Де­жерина—Русси чаще возникает при развитии в нем инфарктного очага в связи с развитием ишемии в латеральных артериях таламуса (аа. thalamki iaterales) — ветвях задней мозговой артерии. Иногда при этом на стороне, противополож­ной патологическому очагу, возникает преходящий гемипарез и развивается гомонимная гемианопсия. Следствием расстройства глубокой чувствительнос­ти может быть сенситивная гемиатаксия, псевдоастриогноз. В случае пора­жения медиальной части таламуса, зубчато-таламического пути, по которому к таламусу проходят импульсы от мозжечка, и руброталамических связей на противоположной патологическому очагу стороне появляется атаксия в соче­тании с атетоидным или хореоатетоидным гиперкинезом, обычно особенно выраженным в кисти и пальцах («таламическая» рука). В таких случаях харак­терна тенденция к фиксации руки в определенной позе: плечо прижато к туло­вищу, предплечье и кисть согнуты и пронированы, основные фаланги пальцев согнуты, остальные разогнуты. Пальцы руки при этом совершают медленные вычурные движения атетоидного характера. В артериальном кровоснабжении таламуса участвуют задняя мозговая ар­терия, задняя соединительная артерия, передняя и задние ворсинчатые арте­рии.

ОБЩИЕ СВЕДЕНИЯ О СТРОЕНИИ ПРОМЕЖУТОЧНОГО МОЗГА

Промежуточный мозг (diencephalon) находится между большими полуша­риями мозга. Основную массу его составляют таламусы (thalamic зритель­ные бугры). Кроме того, к нему относятся структуры, расположенные поза­ди таламусов, над и под ними, составляющие соответственно метаталамус (metathalamus, забугорье), эпиталамус (epithalamus, надбугорье) и гипоталамус (hypothalamus, подбугорье). В состав эпиталамуса (надбугорья) входит шишковидное тело (эпифиз). С гипоталамусом (подбугорьем) связан гипофиз. К промежуточному мозгу от­носятся также зрительные нервы, зрительный перекрест (хиазма) и зрительные тракты — структуры, входящие в состав зрительного анализатора. Полостью промежуточного мозга является III желудочек мозга — остаток полости пер­вичного переднего мозгового пузыря, из которого в процессе онтогенеза фор­мируется этот отдел мозга. /// желудочек мозга представлен узкой полостью, расположенной в центре головного мозга между таламусами, в сагиттальной плоскости. Через межже­лудочковое отверстие (foramen intervcntriculare, монроево отверстие) он со­общается с боковыми желудочками, а через водопровод мозга — с четвертым мозговым желудочком. Верхнюю стенку III желудочка составляют свод (fornix) и мозолистое тело (corpus caiiosum), а в задней ее части — образования забуго-рья. Передняя его стенка сформирована ножками свода, отграничивающими спереди межжелудочковые отверстия, а также передней мозговой спайкой и конечной пластинкой. Боковые стенки III желудочка составляют медиальные поверхности таламусов, в 75% они соединены между собой межталамическим сращением (adhesio interthalamica, или massa intermedia). Нижние части боковых поверхностей и дно III желудочка состоят из образований, относящихся к ги-поталамическому отделу промежуточного мозга.

Adblock detector