СТРУКТУРЫ И ОСНОВНЫЕ ФУНКЦИИ ЭКСТРАПИРАМИДНОЙ СИСТЕМЫ

Чечевицеобразное ядро — самое крупное из расположенных в глубине боль­шого полушария мозга ядерное образование, состоит из трех члеников, сфор­мированных из серого вешества. Два из них (медиальные), более светлые, со­ставляют так называемый бледный шар (globus pallidus). Бледный шар состоит из крупных клеток, расположенных в петлях, которые образованы миелино-выми волокнами, находящимися здесь в большом количестве и обусловливаю­щими его «бледность». Латерально расположенный членик чечевицеобразно-го ядра называется скорлупой (putamen). Скорлупа и находящееся поблизости хвостатое ядро состоят из большого количества мелких клеток с короткими ветвящимися отростками и больших мультиполярных нейронов между ними, имеющих длинные аксоны.

Сходство фило- и онтогенеза, гистологического строения и биохимическо­го состава, а также определенная общность функций служат основанием для объединения скорлупы и хвостатого ядра в полосатое тело (corpus striatum seu neostriatum) у или стриарную систему. Исчерченность полосатого тела обусловле­на наличием чередования в нем участков серого и белого вещества. Стриарной системе противопоставляется паллидарная система, которая известна и как paleostriatum, так как является более древней в филогенетическом отношении и раньше формируется в процессе онтогенеза.

Стриарная и паллидарная системы имеют различное происхождение, разную структуру и в какой-то степени противоположные функции. Скорлупа и хвос­татое ядро происходят из паравентрикулярных структур, расположенных вбли­зи бокового желудочка, тогда как бледный шар, располагаясь вблизи III желу­дочка, имеет общее происхождение с субталамическим ядром. В паллидарной и стриарной системах предполагается наличие элементов соматотопического представител ьства.

Хвостатое ядро повторяет очертания бокового желудочка и имеет форму эллипса, при этом хвост его почти достигает миндалевидного ядра. Скорлупа находится снаружи бледного шара и отделена от него слоем миелинизирован-ных волокон — боковой медуллярной пластинкой бледного шара. Латеральная сторона скорлупы отграничена от ограды наружной капсулой (capsula externa). В ее состав входят ассоциативные волокна, связывающие слуховую область коры височной доли с моторной и премоторной корой.

Паллидарная и стриарная структуры объединяются понятием стриопаллидар-ная система. Это объединение обусловлено тем, что при нормальной жизнеде­ятельности организма функции их взаимно уравновешивают друг друга, и благо­даря этому стриопаллидарная система оказывает влияние на двигательные акты как единое целое. Причем в этой единой функциональной системе паллидарные структуры обычно признаются активирующими, а стриарные — тормозящими. Стриопаллидарная система — составная часть экстрапирамидной системы, по­нятия более широкого, включающего в себя и ряд других структур мозга.

Структуры стриопаллидарной системы имеют связи между собой, а также афферентные и эфферентные связи с другими отделами экстрапирамидной системы, в частности с черной субстанцией, красным ядром, ретикулярной формацией, мозжечком, а также с корой больших полушарий и перифери­ческими мотонейронами ствола и спинного мозга. Через переднюю спайку

мозга (комиссуру Мейнерта) осуществляется взаимодействие подкорковых уз­лов правого и левого полушарий. Тесная связь стриопаллидарной системы с ядрами гипоталамического отдела мозга определяет ее роль в механизмах эмо­циональных реакций.

Полосатое тело получает импульсы от многих отделов мозговой коры, при этом особенно значительны ее ипсилатеральныс связи с двигательными зона­ми (заднелобные отделы, предцентральная извилина, парацентральная долька). Нервные волокна, обеспечивающие эти связи, расположены в определенном порядке. Поступающая по ним импульсация оказывает в основном тормозное действие на клетки полосатого тела. Другая система афферентных волокон обеспечивает передачу импульсов в полосатое тело из центромедианного ядра таламуса. Эти импульсы оказывают на собственные клетки полосатого тела, скорее всего, активирующее действие.

Афферентные пути из хвостатого ядра и из скорлупы, составляющие поло­сатое тело, направляются к латеральному и медиальному сегментам бледного шара, разделенным тонкой медуллярной пластинкой. Кроме того, полосатое тело имеет прямые и обратные связи с черной субстанцией, которая обеспе­чивается соответственно аксонами стрионигральных и нигростриарных ней­ронов. Нигростриарные нейроны являются допаминергическими, тормозящими функцию априорных холинергических нейронов и уменьшающими таким образом их тормозное влияние на структуры паллидума. ГАМКергические стриониграль-ные нейроны тормозят активность клеток черной субстанции. Они оказывают тормозное действие как на дофаминергические нигростриарные нейроны, так и на нигроспинальные нейроны, аксоны которых направляются к гамма-мото­нейронам спинного мозга, регулируя таким образом тонус поперечнополоса­тых мышц. Часть нервных волокон, идущих от полосатого тела, обеспечивает его влияние на многие ядерные образования, относящиеся к экстра пирамид­ной и к лимбико-ретикулярной системам.

Из эфферентных волокон, исходящих из медиального сектора бледного шара, состоит, в частности, так называемая чечевичная петля (ansa lenticularis). Ее волокна идут вентромедиально вокруг задней ножки внутренней капсулы к таламусу, гипоталамусу и к субталамическому ядру. После перекреста эти проводящие пути, несущие импульсы из паллидарной системы, направляются в ретикулярную формацию ствола, откуда начинается цепь нейронов, фор­мирующих ретикулоспинномозговой путь, заканчивающийся у мотонейронов передних рогов спинного мозга.

Основная масса волокон, исходящих из бледного шара, входит в состав та-ламического пучка (fasciculus thalamicus), состоящего из паллидоталамических и таламопаллидарных волокон, обеспечивающих прямую и обратную связи между паллидумом и таламусом. Обоюдными являются и нервные связи меж­ду правым и левым таламусами и корой больших полушарий. Существование таламокортикальных и кортикостриарных связей обеспечивает образование реверберирующих кругов, по которым нервные импульсы могут распростра­няться в обоих направлениях, обеспечивая согласованность функций таламу­са, коры и полосатого тела. Импульсация, направляющаяся к коре со стороны таламуса и стриарной системы, по всей вероятности, влияет на степень актив­ности двигательных зон коры больших полушарий. Регуляцию двигательной активности, адекватность темпа, амплитуды и координации движений обес­печивают также связи подкорковых узлов с вестибулярной, мозжечковой и проприоцсптивной системами.

Кора больших полушарий воздействует на функциональное состояние стрио-паллидарной системы. Влияние коры на экстрапирамидные структуры осу­ществляется через посредство эфферентных, нисходящих проводящих путей. Большинство их проходит через внутреннюю капсулу, меньшая часть — через наружную капсулу. Из этого следует, что поражение внутренней капсулы обычно прерывает не только пирамидные пути и корково-ядерные связи, но и ведет к из­менению функционального состояния экстрапирамидных образований, в частнос­ти вызывает характерное в таких случаях выраженное повышение мышечного тонуса в контралатеральной части тела.

Деятельность сложно организованной экстрапирамидной системы, а также нервных пучков, составляющих корковоспинальный путь, в конце концов, на­правлена на обеспечение отельных движений и их коррекцию, а также на фор­мирование сложных двигательных актов. Реализация влияния экстрапирамид­ных структур на мотонейроны спинного мозга осуществляется эфферентными системами. Эфферентные импульсы, идущие из образований стриопаллидар-ной системы, направляются к клеткам ретикулярной формации, вестибуляр­ных ядер, нижней оливы и других структур экстрапирамидной системы. Пере­ключившись в них с нейрона на нейрон, нервные импульсы направляются в спинной мозг и, проходя по ретикулоспинальному, тектоспинальному (начи­нающемуся в ядрах четверохолмия), руброспинальному пути Монакова, меди­альному продольному пучку (начинающемуся от ядер Даркшевича и Кахаля), вестибуло-спинномозговому и другим экстрапирамидным проводящим путям, достигают клеток его передних рогов.

Большая часть проводников (по пути следования от подкорковых узлов к клеткам передних рогов спинного мозга) совершает перекрест на разных уров­нях мозгового ствола. Таким образом, подкорковые узлы каждого полушария мозга и другие клеточные образования головного мозга, относящиеся к экс­трапирамидной системе (кроме мозжечка), оказываются связанными, главным образом, с альфа- и гамма-мотонейронами противоположной половины спин­ного мозга. Через проводящие пути, относящиеся к экстрапирамидной систе­ме, а также через пирамидные полисинаптические пути они контролируют и регулируют состояние мышечного тонуса и двигательную активность.

От деятельности экстрапирамидных структур зависит способность чело­века принимать оптимальную для предстоящего действия позу, поддержи­вать необходимое реципрокное соотношение тонуса мышц-агонистов и ан­тагонистов, двигательную активность, а также плавность и соразмерность двигательных актов во времени и пространстве. Экстрапирамидная система обеспечивает преодоление инерции покоя и инерции движений, координа­цию произвольных и непроизвольных (автоматизированных) и, в частности, локомоторных движений, спонтанную мимику, влияет на состояние вегета­тивного баланса.

В случаях нарушения функций той или иной структуры экстрапирамидной системы могут возникать признаки дезорганизации деятельности всей систе­мы, что ведет к развитию различных клинических феноменов: изменения по­буждения к движениям, полярные изменения мышечного тонуса, нарушение способности к осуществлению рациональных, экономичных, оптимальных по эффективности как автоматизированных, так и произвольных двигательных актов. Такие изменения, в зависимости от места и характера обусловившего их патологического процесса, могут варьировать в широких пределах, проявляясь в различных случаях подчас диаметрально противоположной симптоматикой: от двигательной аспонтанности до различных вариантов насильственных, из­быточных движений — гиперкинезов.

Много ценной информации о сущности деятельности нервных структур, относящихся к экстрапирамидным структурам, внесло изучение медиаторов, обеспечивающих регуляцию их функций.

Adblock detector