Микросомальное и митохондриальное окисление в печени и почках при атеросклерозе

Микросомальное окисление: совокупность реакций

Роль микросомального окисления в жизни организма сложно переоценить или не заметить. Инактивация ксенобиотиков (ядовитых веществ), распад и образование гормонов надпочечников, участие в обмене белков и сохранении генетической информации – это лишь малая известная толика проблем, которые решаются благодаря микросомальному окислению. Это автономный процесс в организме, который запускается после попадания триггерного вещества и заканчивающийся с его эллиминацией.

Определение

Микросомальное окисление – это каскад реакций, входящих в первую фазу преобразования ксенобиотиков. Суть процесса заключается в гидроксилировании веществ с использованием атомов кислорода и образованием воды. Благодаря этому меняется структура первоначального вещества, а его свойства могут как подавляться, так и усиливаться.

Микросомальное окисление позволяет перейти к реакции конъюгации. Это вторая фаза преобразования ксенобиотиков, в конце которой к уже существующей функциональной группе присоединятся молекулы, вырабатываемые внутри организма. Иногда образуются промежуточные вещества, вызывающие повреждение клеток печени, некроз и онкологическое перерождение тканей.

Окисление оксидазного типа

Реакции микросомального окисления происходят вне митохондрий, поэтому на них расходуется около десяти процентов всего кислорода, попадающего в организм. Основные ферменты в этом процессе – оксидазы. В их структуре присутствуют атомы металлов с переменной валентностью, такие как железо, молибден, медь и другие, а значит, они способны принимать электроны. В клетке оксидазы расположены в особых пузырьках (пероксисомах), которые находятся на внешних мембранах митохондрий и в ЭПР (зернистый эндоплазматический ретикулюм). Субстрат, попадая на пероксисомы, теряет молекулы водорода, которые присоединяются к молекуле воды и образуют перекись.

Существует всего пять оксидаз:

– моноаминооксигеназа (МАО) – помогает окислять адреналин и другие биогенные амины, образующиеся в надпочечниках;

– диаминооксигеназа (ДАО) – участвует в окислении гистамина (медиатор воспаления и аллергии), полиаминов и диаминов;

– оксидаза L-аминокислот (то есть левовращающихся молекул);

– оксидаза D-аминокислот (правовращающихся молекул);

– ксантиноксидаза – окислят аденин и гуанин (азотистые основания, входящие в молекулу ДНК).

Значение микросомального окисления по оксидазному типу состоит в устранении ксенобиотиков и инактивации биологически активных веществ. Образование перекиси, оказывающей бактерицидное действие и механическое очищение в месте повреждения, является побочным явлением, которое занимает важное место среди прочих эффектов.

Окисление оксигеназного типа

Реакции оксигеназного типа в клетке также происходят на зернистом эндоплазматическом ретикулуме и на внещних оболочках митохондрий. Для этого необходимы специфические ферменты – оксигеназы, которые мобилизуют молекулу кислорода из субстрата и внедряют ее в окисляемое вещество. Если внедряется один атом кислорода, то фермент называется монооксигеназа или гидроксилаза. В случае внедрения двух атомов (то есть целой молекулы кислорода), фермент носит название диаксигеназа.

Реакции окисления оксигеназного типа входят в трехкомпонентный мультиферментный комплекс, который участвует в переносе электронов и протонов из субстрата с последующей активацией кислорода. Весь этот процесс происходит с участием цитохрома Р450, о котором более подробно еще будет рассказано.

Примеры реакций оксигеназного типа

Как уже упоминалось выше, монооксигеназы для окисления используют только один атом кислорода из двух, имеющихся в наличии. Второй они присоединяют к двум молекулам водорода и образуют воду. Одним из примеров такой реакции может служить образование коллагена. Донором кислорода в таком случае выступает витамин С. Пролингидроксилаза отбирает у него молекулу кислорода и отдает его пролину, который, в свою очередь, входит в молекулу проколлагена. Этот процесс придает прочности и эластичности соединительной ткани. Когда в организме дефицит витамина С, то развивается подагра. Она проявляется слабостью соединительной ткани, кровотечениями, гематомами, выпадением зубов, то есть качество коллагена в организме становится ниже.

Еще одним примером могут служить гидроксилазы, которые преобразуют молекулы холестерина. Это один из этапов образования стероидных гормонов, в том числе и половых.

Малоспецифичные гидроксилазы

Это гидролазы, необходимые для окисления чужеродных веществ, таких как ксенобиотики. Смысл реакций заключается в том, чтобы сделать такие вещества более податливыми для выведения, более растворимыми. Этот процесс называется детоксикацией, а происходит он по большей части в печени.

За счет включения целой молекулы кислорода в ксенобиотики производится разрыв цикла реакций и распад одного сложного вещества на несколько более простых и доступных для обменных процессов.

Активные формы кислорода

Кислород является потенциально опасным веществом, так как, по сути, окисление – это процесс горения. В виде молекулы О2 или воды он стабилен и химически инертен, потому что его электрические уровни заполнены, и новые электроны не могут присоединиться. Но соединения, в которых у кислорода не у всех электронов есть пара, имеют высокую реакционную способность. Поэтому их называют активными.

Читайте также:  Можно применять лекарство голд рей при рассеянном склерозе

Такие соединения кислорода:

  1. В монооксидных реакциях образуется супероксид, который отделяется от цитохрома Р450.
  2. В оксидазных реакциях идет образование пероксидного аниона (перекиси водорода).
  3. Во время реоксигенации тканей, которые подверглись ишемии.

Самым сильным окислителем является гидроксильный радикал, он существует в свободном виде всего миллионную долю секунды, но за это время успевает пройти множество окислительных реакций. Его особенностью является то, что гидроксильный радикал воздействует на вещества только в том месте, в котором образовался, так как не может проникать через ткани.

Супероксиданион и перекись водорода

Эти вещества активны не только в месте образования, но и на некотором удалении от них, так как могут проникать через мембраны клеток.

Гидроксильная группа вызывает окисление остатков аминокислот: гистидина, цистеина и триптофана. Это приводит к инактивации ферментных систем, а также нарушению работы транспортных белков. Кроме того, микросомальное окисление аминокислот приводит к разрушению структуры нуклеиновых азотистых оснований и, как следствие, страдает генетический аппарат клетки. Окисляются и жирные кислоты, входящие в состав билипидного слоя клеточных мембран. Это влияет на их проницаемость, работу мембранных электролитных насосов и на расположение рецепторов.

Ингибиторы микросомального окисления – это антиоксиданты. Они содержатся в продуктах питания и вырабатываются внутри организма. Самым известным антиоксидантом является витамин Е. Эти вещества могут сдерживать микросомальное окисление. Биохимия описывает взаимодействие между ними по принципу обратной связи. То есть чем больше оксидаз, тем сильнее они подавляются, и наоборот. Это помогает сохранять равновесие между системами и постоянство внутренней среды.

Электротранспортная цепь

Микросомальная система окисления не имеет растворимых в цитоплазме компонентов, поэтому все ее ферменты собраны на поверхности эндоплазматического ретикулума. Эта система включает несколько белков, которые формируют электротранспортную цепь:

– НАДФ-Р450-редуктаза и цитохром Р450;

– НАД-цитохромВ5-редуктаза и цитохром В5;

Донором электронов в подавляющем числе случаев выступает НАДФ (никотинамидадениндинуклеотидфосфа́т). Он окисляется НАДФ-Р450-редуктазой, который содержит два кофермента (ФАД и ФМН), для принятия электронов. В конце цепи ФМН окисляется при помощи Р450.

Цитохром Р450

Это фермент микросомального окисления, гем-содержащий белок. Связывает кислород и субстрат (как правило, это ксенобиотик). Название его связано с поглощением света с длинной волны в 450 нм. Биологи обнаружили его во всех живых организмах. На данный момент описано более одиннадцати тысяч белков, входящих в систему цитохром Р450. У бактерий это вещество растворено в цитоплазме, и считается, что такая форма является наиболее эволюционно древней, чем у человека. У нас цитохром Р450 – это пристеночный белок, зафиксированный на эндоплазматической мембране.

Ферменты данной группы участвуют в обмене стероидов, желчных и жирных кислот, фенолов, нейтрализации лекарственных веществ, ядов или наркотиков.

Свойства микросомального окисления

Процессы микросомального окисления обладают широкой субстратной специфичностью, а это, в свою очередь, позволяет обезвреживать разнообразные вещества. Одиннадцать тысяч белков цитохрома Р450 могут складываться более чем в сто пятьдесят изоформ этого фермента. Каждая из них имеет большое количество субстратов. Это дает возможность организму избавляться практически от всех вредных веществ, которые образуются внутри него или попадают извне. Вырабатываясь в печени, ферменты микросомального окисления могут действовать как на месте, так и на значительном удалении от этого органа.

Регуляция активности микросомального окисления

Микросомальное окисление в печени регулируется на уровне информационной РНК, а точнее ее функции – транскрипции. Все варианты цитохрома Р450, например, записаны на молекуле ДНК, и для того чтобы он появился на ЭПР, необходимо «переписать» часть информации с ДНК на информационную РНК. Затем иРНК направляется на рибосомы, где образуются молекулы белка. Количество этих молекул регулируется извне и зависит от объема веществ, которые необходимо деактивировать, а также от наличия необходимых аминокислот.

На данный момент описано более двухсот пятидесяти химических соединений, которые активируют в организме микросомальное окисление. К ним относятся барбитураты, ароматические углеводы, спирты, кетоны и гормоны. Несмотря на такое кажущееся разнообразие, все эти вещества липофильны (растворимы в жирах), а значит восприимчивы к цитохрому Р450.

Источник

Микросомальное окисление повышает реакционную способность молекул

Микросомальное окисление – это последовательность реакций с участием оксигеназ и НАДФН, приводящих к внедрению атома кислорода в состав неполярной молекулы и появлению у нее гидрофильности и повышает ее реакционную способность..

Читайте также:  Характеристика атеросклероза сосудов нижних конечностей

Реакции микросомального окисления осуществляются несколькими ферментами, расположенными на мембранах эндоплазматического ретикулума (в случае in vitro они называются микросомальные мембраны). Ферменты организуют короткие цепи, которые заканчиваются цитохромом P450.

Реакции микросомального окисления относятся к реакциям фазы 1 и предназначены для придания гидрофобной молекуле полярных свойств и/или для повышения ее гидрофильности, усиления реакционной способности молекул для участия в реакциях 2 фазы. В реакциях окисления происходит образование или высвобождение гидроксильных, карбоксильных, тиоловых и аминогрупп, которые и являются гидрофильными.

Ферменты микросомального окисления располагаются в гладком эндоплазматическом ретикулуме и являются оксидазами со смешанной функцией (монооксигеназами).

Цитохром P450

Основным белком микросомального окисления является гемопротеин – цитохром Р 450. В природе существует до 150 изоформ этого белка, окисляющих около 3000 различных субстратов. Соотношение разных изоформ цитохрома Р 450 различается в силу генетических особенностей. Считается, что одни изоформы участвуют в биотрансформации ксенобиотиков, другие – метаболизируют эндогенные соединения (стероидные гормоны, простагландины, жирные кислоты и др.).

Цитохром Р 450 взаимодействует с молекулярным кислородом и включает один атом кислорода в молекулу субстрата, способствуя появлению (усилению) у нее гидрофильности, а другой – в молекулу воды. Основными его реакциями являются:

  • окислительное деалкилирование, сопровождающееся окислением алкильной группы (метил, этил) при атомах N, O или S до альдегидной и ее отщеплением,
  • окисление (гидроксилирование) неполярных соединений с алифатическими цепями или ароматическими кольцами,
  • окисление спиртов до соответствующих альдегидов.

Работа цитохрома Р450 обеспечивается двумя ферментами:

  • НАДН‑цитохром b5‑оксидоредуктаза, содержит ФАД,
  • НАДФН‑цитохром Р450‑оксидоредуктаза, содержит ФМН и ФАД.

Схема взаиморасположения ферментов микросомального окисления и их функции

Обе оксидоредуктазы получают электроны от соответствующих восстановленных эквивалентов и передают их на цитохром Р450. Этот белок, предварительно присоединив молекулу восстановленного субстрата, связывается с молекулой кислорода. Получив еще один электрон, цитохром P450 осуществляет включение в состав гидрофобного субстрата первого атома кислорода (окисление субстрата). Одновременно происходит восстановление второго атома кислорода до воды.

Последовательность реакций гидроксилирования субстратов с участием цитохрома Р 450

Существенной особенностью микросомального окисления является способность к индукции или ингибированию, т.е. к изменению мощности процесса.

Индукторами являются вещества, активирующие синтез цитохрома Р450 и транскрипцию соответствующих мРНК. Они бывают

1. Широкого спектра действия, которые обладают способностью стимулировать синтез цитохрома Р450, НАДФН-цитохром Р450-оксидоредуктазы и глюкуронилтрансферазы. Классическим представителем являются производные барбитуровой кислоты – барбитураты, также в эту группу входят диазепам, карбамазепин, рифампицин и др.

2. Узкого спектра действия, т.е. стимулируют одну из форм цитохрома Р450 – ароматические полициклические углеводороды (метилхолантрен, спиронолактон), этанол.

Ингибиторы микросомального окисления связываются с белковой частью цитохрома или с железом гема. Они делятся на:

1. Обратимые

  • прямогодействия – угарный газ (СО), антиоксиданты,
  • непрямогодействия, т.е. влияют через промежуточные продукты своего метаболизма, которые образуют комплексы с цитохромом Р450эритромицин.

2. Необратимые ингибиторы – аллопуринол, аминазин, прогестерон, оральные контрацептивы, тетурам, фторурацил,

Оценка реакций 1-й фазы

Оценку микросомального окисления можно проводить следующими способами:

  • определение активности микросомальных ферментов после биопсии,
  • по фармакокинетике препаратов,
  • с помощью метаболических маркеров (антипириновая проба).

Антипириновая проба

Обследуемый принимает утром натощак амидопирин из расчета 6 мг/кг веса. Собирается 4 порции мочи в интервале соответственно от 1 до 6 часов, 6-12, 12-24 и 45-48 часов. Объем мочи измеряется. Не позже, чем через 24 часа моча центрифугируется или фильтруется. Далее исследуется концентрация 4-аминоантипирина и его метаболита N-ацетил-4-аминоантипирина в моче.

Источник

Нарушения обмена холестерола имеют тяжелые последствия

Одним из самых ярких и клинически значимых нарушений обмена липопротеинов является атеросклероз.

Атеросклероз

Атеросклероз – это отложение холестерина и его эфиров в соединительной ткани стенок артерий, в которых выражена механическая нагрузка на стенку (по убыванию воздействия): абдоминальная аорта, коронарная артерия, подколенная артерия, бедренная артерия, тибиальная артерия, грудная аорта, дуга грудной аорты, сонные артерии.

Стадии атеросклероза

Морфологически выделяют четыре стадии атеросклероза. Первая и вторая стадии распространены широко и при правильном питании являются обратимыми, 3 и 4 стадии уже имеют клиническое значение и необратимы.

1 стадия – повреждение эндотелия

Это “долипидная” стадия, обнаруживается даже у годовалых детей. Изменения этой стадии неспецифичны и ее могут вызывать: дислипопротеинемия, гипертензия, повышение вязкости крови, курение, вирусные и бактериальные инфекции, свинец, кадмий и т.п.

На этой стадии в эндотелии создаются зоны повышенной проницаемости и клейкости. Внешне это проявляется в разрыхлении и истончении (вплоть до исчезновения) защитного гликокаликса на поверхности эндотелиоцитов, расширении межэндотелиальных щелей. Это приводит к усилению выхода моноцитов и липопротеинов (ЛПНП и ЛПОНП) в интиму.

Читайте также:  Нет оргазма при рассеянном склерозе
2 стадия – стадия начальных изменений

Отмечается у большинства детей и молодых людей.

Поврежденный эндотелий и активированные тромбоциты вырабатывают медиаторы воспаления, факторы роста, эндогенные окислители. В результате через поврежденный эндотелий в интиму сосудов еще более активно проникают моноциты и способствуют развитию воспаления. При этом ЛПНП, попавшие под интиму, начинают изменяться (модифицироваться), т.е. подвергаются окислению, гликозилированию, ацетилированию.

Моноциты, преобразуясь в макрофаги, активно поглощают измененные липопротеины при участии “мусорных” рецепторов (scavenger [‘skævɪnʤə] receptors ). Таким образом, поглощение модифицированных ЛПНП макрофагами идет без участия апоВ-100-рецепторов, а, значит, нерегулируемо.

При поглощении модифицированных липопротеинов макрофаги активируются, выделяют цитокины и разнообразные факторы роста, которые стимулируют деление гладкомышечных клеток, синтез межклеточного вещества, и играют роль в развитии атеросклеротической бляшки.

Под действием факторов роста гладкомышечные клетки медии мигрируют в интиму и начинают пролиферировать, превращаясь в макрофагоподобные клетки. Они также накапливают модифицированные ЛПНП.

Накопление липидов в макрофагах быстро исчерпывает невысокие возможности клеток по утилизации свободного и этерифицированного ХС. Они переполняются стероидами и превращаются в пенистые клетки . Внешне на эндотелии появляются липидные пятна и полоски.

Процесс развития атеросклероза (в динамике слева-направо)
3 стадия – стадия поздних изменений

Продолжают развертываться и приобретают масштабность события, начавшиеся на второй стадии.
Внешне проявляется как выступание поверхности в просвет сосуда. Стадия дополнительно характеризуется следующими особенностями:

  • увеличение количества коллагена, эластина и гликозаминогликанов, т.е. накопление межклеточного вещества,
  • пролиферация и гибель пенистых клеток (апоптоз),
  • накопление в межклеточном пространстве свободного ХС и этерифицированного ХС,
  • инкапсулирование холестерола и формирование фиброзной бляшки.
4 стадия – стадия осложнений

На этой стадии происходят:

  • кальцификация бляшки и ее изъязвление, приводящее к эмболии сосудов,
  • тромбоз из-за адгезии и активации тромбоцитов,
  • разрыв сосуда.

Основы лечения

В лечении атеросклероза обязательно должны быть две составляющие: диета и медикаменты . Целью лечения является снижение концентрации общего ХС плазмы, ХС ЛПНП и ЛПОНП, повышение концентрации ЛПВП.

Диета

1. Обеспечение организма витаминами : аскорбиновой кислотой, пантотеновой (коэнзим А) и никотиновой (НАДФ) кислотами, что способствует превращению холестерола печени в желчные кислоты (синтез желчных кислот). Для снижения окислительной модификации ЛПНП необходим витамин Е.

2. Снижение калорийности пищи за счет углеводов и жиров. Жиры пищи должны включать равные доли насыщенных, мононенасыщенных и полиненасыщенных жирных кислот. Доля жидких жиров, содержащих полиненасыщенные жирные кислоты (ПНЖК), должна быть около 30% от всех жиров, но не меньше 15 г/сут. Роль ПНЖК в лечении гиперхолестеролемии и атеросклероза сводится к:

  • ограничению всасывания ХС в тонком кишечнике,
  • активации синтеза фосфатидилхолина, что снижает вязкость желчи и облегчает ее отток в кишечник,
  • усилению желчеотделения,
  • снижению синтеза ЛПНП в печени и секреции их в кровь,
  • увеличению синтеза ЛПВП и концентрации их в крови, что способствует удалению холестерина из тканей в печень.

3. Обеспечение организма чистой водой до физиологических норм (1,0-1.5 л/сут), что препятствует сгущению желчи.

4. Потребление высоких количеств овощей, содержащих целлюлозу (капуста, морковь, свекла) для усиления перистальтики кишечника, стимуляции желчеотделения и снижения всасывания ХС.

5. Умеренная физическая нагрузка – способствует синтезу ЛПВП и, значит, оттоку холестерина от тканей в печень.

Медикаменты

1. Препараты ω6- и ω3- жирных кислот (Линетол, Эссенциале, Омеганол и т.п.) повышают концентрацию ЛПВП в плазме, ускоряют отток ЛПНП в печень, стимулируют желчеотделение.

2. Подавление всасывания ХС в желудочно-кишечном тракте – анионообменные смолы (Холестирамин, Холестид, Questran).

3. Высокие дозы никотиновой кислоты подавляют мобилизацию жирных кислот из депо и снижают синтез ЛПОНП в печени, а, следовательно, и образование из них ЛПНП в крови.

4. Фибраты (клофибрат и т.п.) увеличивают активность липопротеинлипазы, ускоряют катаболизм ЛПОНП и хиломикронов, что повышает переход холестерола из них в ЛПВП и его эвакуацию в печень.

5. Статины (ловастатин, флувастатин) ингибируют ГМГ-SКоА-редуктазу, что снижает в 2 раза синтез ХС в печени и ускоряют его отток из ЛПВП в гепатоциты.

Предложены и совсем радикальные способы:

6. Подавление функции энтероцитов с помощью антибиотика неомицина , что снижает всасывание жиров.

7. Хирургическое удаление подвздошной кишки и прекращение реабсорбции желчных кислот.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector